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Vortex matter in lead nanowires
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Abstract. Theoretical and experimental magnetizations of lead nanowire arrays well below the supercon-
ducting transition temperature Tc are described. The magnetic response of the array was investigated with
a SQUID magnetometer. Hysteretic behaviour and phase transitions have been observed in sweeping up
and down the external magnetic field at different temperatures. The Meissner and Abrikosov states were
also experimentally observed in this apparently type-I superconductor. This fact brings to the fore the
non-trivial behaviour of the critical boundary κc (= 1/

√
2 in bulk materials) between type-I and type-II

phase transitions at mesoscopic scales. The time-independent Ginzburg-Landau equations particularized to
cylindrically symmetric configurations enable one to explain and reproduce the experimental magnetization
curves within 10% of error.

PACS. 74.25.Ha Magnetic properties – 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau,
etc.) – 85.25.Kx Superconducting wires, fibers, and tapes

1 Introduction

Recent developments in nanotechnologies and measure-
ment techniques allow nowadays the experimental inves-
tigation of the magnetic and thermodynamic supercon-
ducting properties of mesoscopic samples [1,2]. In order to
compare the magnetization curves (magnetization versus
external magnetic field at a given temperature T ) of an
array of lead nanowires to the theoretical predictions, a
general understanding of the solutions to the Ginzburg-
Landau (GL) theory must be achieved. In the present con-
tribution, solutions to the GL equations are reported in
this geometry, together with some explicit numerical ex-
amples compared to actual experimental data.

2 The Ginzburg-Landau equations

For time independent configurations in the absence of any
external electric field, but in the presence of an external
magnetic field Bext, the free energy of a superconductor
reads
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where Ψ(x) is the order parameter, or Cooper pair wave
function, normalized to its constant value in the bulk of
the material in the absence of magnetic field; B(x) =
∇ × A, q = −2|e| < 0 is the Cooper pair charge, and
λ(T ) and ξ(T ) are the penetration and coherence lengths,
respectively. With this parametrization, the free energy
vanishes at the normal-superconducting transition and re-
mains negative when the sample is in the superconduct-
ing phase. From equation (1), the physical meaning of
each contribution appears clearly: λ weighs the relative
energetic contributions of the magnetic field and the con-
densate, while ξ weighs the relative contributions of the
condensate energy due to spatial inhomogeneities in Ψ(x)
and deviations from the bulk value |Ψ | = 1 (GL potential
energy).

Extremizing the free energy (1) leads to the
GL equation
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which couples to Maxwell’s equation,

∇ × B = µ0Jem, (3)

with the electromagnetic current density given by
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Our numerical approximations are set up to simulate
cylinder of infinite height immersed in an external mag-
netic field parallel to its axis (±êz direction). Indeed, in
the experiment, the external magnetic field is applied par-
allel to the nanowires axis to avoid demagnetization ef-
fects. Moreover, these nanowires are so long (50 µm) com-
pared to the coherence length that they can be modelled as
being infinite in height. It is well-known that the solutions
to the GL equations for axially symmetric mesoscopic
samples can be divided into two different classes [1,3–6].

In the first case, the order parameter Ψ(x) is axi-
ally symmetric inside the material. Consequently, impos-
ing this symmetry as well as invariance under translations
along z, the functions being integrated in the free energy
(1) are only radial dependent, except for the possible angu-
lar dependence of the phase of the order parameter. There-
fore, under these symmetries, our numerical approach
may be viewed as a one dimensional (1D) model. Indeed,
applying the following parametrizations: B = B(r)êz ,
A = A(r)êφ, µ0Jem = J(r)êφ, Ψ(r, φ) = f(r)eiθ(φ) and
ρ(r) = |Ψ(r, φ)|2 = f2(r), the system of GL equations
reduces to:



∂2

∂u2 g(u) = 1
u∂ug(u) + f2(u)g(u)

∂2

∂u2 f(u) = − 1
u∂uf(u) + 1

u2 f(u)g2(u)

+κ2f(u)
(
f2(u) − 1

) (5)

where u = r
λ , b(u) = B(u)

Φ0/(2πλ2) = 1
u∂ug(u) and

g(u) = u qλ3

�

1
f2(u)J(u) are properly normalized dimension-

less variables.
The boundary conditions (b.c.) associated to this cou-

pled system of nonlinear equations are
at u = 0: 


g(u)|u=0 = −L;

∂uf(u)|u=0 = 0 if L = 0

or f(u)|u=0 = 0 if L �= 0,

(6)

at u = ub: {
1
u∂ug(u)|u=ub

= bext;

∂uf(u)|u=ub
= 0.

(7)

where L stands for the fluxoid quantum number, such that
Ψ(r, φ) = f(r)e−iLφ.

At each boundary, only two b.c. are specified whereas
four such conditions are required for a unique solution.
Hence, a numerical approach requires two more parame-
ters, say f0 and g0, to be specified at one of the boundaries,
with values to be adjusted such that the two other b.c. are
met at the other boundary (shooting method).

Beyond the well-known solutions describing the Meiss-
ner (no vorticity, L = 0) and paramagnetic Meissner (L �=
0) effects, solutions corresponding to ring-like current vor-
tices (called “annular vortices”) were found in cylindrical
configurations with radius larger than the product πξ (see
Ref. [7] for further details).

In the second case, the axial symmetry is broken. Mul-
tivortex [3] and half-integer vortex [8,9] states become
therefore possible.

Fig. 1. From left to right: SEM micrographs showing three
subsequent steps after 3, 6 and 9 minutes respectively of dis-
solution from the top of the membrane at room temperature.

3 Experimental and theoretical magnetization
curves

Magnetization measurements of lead nanowires arrays
were performed using a SQUID extractive magnetome-
ter. The mesoscopic superconducting nanowires with
large aspect ratio were grown by electrodeposition inside
nanoporous anodized alumina membranes (see [2] for fur-
ther details). Such a membrane contains a densely packed
array of regular shaped pores (diameter around 250 nm)
without lateral crossovers between individual pores. For
the magnetic measurements, all the nanowires are kept
inside the membrane so that they are all parallel to one
another and to the applied magnetic field Bext. Their
large number produces a magnetization detectable by the
SQUID and, due to the high penetration of the magnetic
field inside the nanowires, their mutual interaction may be
neglected. The membrane itself being paramagnetic, gives
a signal that is one order of magnitude smaller than the
magnetization of the nanowires, which may thus be easily
subtracted (linear function of Bext). Note that the cath-
ode which is used for the electrodeposition [2] has been
removed before performing measurements.

The array of lead nanowires has been observed using a
SEM microscope. For this purpose, the membrane is par-
tially dissolved from the top using a NaOH (5 mol/l) solu-
tion and rinsed with water. As a consequence (see Fig. 1),
the nanowires are piled up and clearly display their large
aspect ratio. On the right of the same figure, one can also
see the relative regular shape of the pores (even though
they are a bit enlarged by the dissolution). On the central
part of the figure, the relatively good cylindrical geometry
of these lead nanowires may also be noticed.

3.1 Magnetization modelling

In order to reproduce theoretically the total magnetization
of the sample, some assumptions must be considered to
simplify the model.
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First of all, due to the small radius of the nanowires,
only the 1D radial GL equations with L = 0 and, for the
lowest temperatures, with L = 1, are used to explain the
experimental magnetization. Indeed, for such sizes, tem-
peratures and κ values, the phase diagram (Bext, Energy)
exhibits only the states with L < 2 since the Giant Vortex
(GV) states (L ≥ 2) are too large compared to the radius.

In addition, the magnetization presents a weak dia-
magnetic (in the L = 0 state) and paramagnetic (in the
L = 1 state) response in this mesoscopic limit. The mutual
magnetic interactions between adjacent nanowires may
thus be neglected in our model.

Therefore, considering a Gaussian distribution for the
radii ri of nanowires constituting the array, the total the-
oretical magnetization may be written as,

Mtot = A
∑
ri

α(ri) m(ri), (8)

where
– A is a scaling factor related to the number N of

nanowires (with height h) inside the sample: N =
A/(hΦ0),

– m(ri) is the theoretical magnetization of one nanowire
with radius ri. Such quantity is obtained numerically
(see Fig. 6, below) by using a shooting method with
two point boundary value problems [10] to solve the
1D-GL equations (5),

– α(ri) = 1
σ
√

2π
e

−(r̄−ri)
2

2σ2 is the statistical weight associ-
ated to the magnetization m(ri), assuming a Gaussian
distribution with mean radius r̄ and variance σ2,

– the summation extends over all radii from r̄ − 3σ to
r̄ + 3σ with 1 nm steps.

3.2 Analysis of the experiments

The following analysis proposes a comparison between ex-
perimental magnetization curves of lead nanowires (criti-
cal temperature Tc = 7.2 K), with a mean radius of 116
nm and a variance of 11 nm1. These values being fixed,
the free parameters of the model are λ, ξ and A. Finally,
in order to study the hysteretic behaviour of the sample,
it is worth mentioning here that the experimental mag-
netization curves have been obtained when the external
magnetic field is swept up and down after a zero field
cooling.

Figure 2 shows experimental and theoretical results
for four values of the temperature close to Tc. Beyond
the qualitative and quantitative agreement between the
curves, it should be stressed that the absence of experi-
mental hysteretic behaviour was also anticipated on basis
of the model. Indeed, for such temperatures, the phase dia-
gram (Bext, Energy) (see Fig. 6 with T = 6.85 K) exhibits
a second-order phase transition near the critical magnetic
field. In addition, we should recall that the critical mag-
netic field is enhanced compared to its bulk value because
of the incomplete Meissner effect [2].

1 The average radius and the variance could be determined
by means of a scanning electronic microscope (SEM).
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Fig. 2. Comparison between the experimental (markers) and
theoretical (solid lines) total magnetization with L = 0. From
top to bottom, curves at T = 6.85 K, T = 6.5 K, T = 6.25 K
and T = 6 K respectively. The adjusted values for λ and ξ
are (λ, ξ) = (120, 260), (75, 197), (70, 168), (65, 152) nm respec-
tively.
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Fig. 3. Comparison between the experimental (markers) and
theoretical (solid and dotted lines) total magnetization with
L = 0. From top to bottom, curves at T = 5.75 K and T = 5 K.
The adjusted values for λ and ξ are (λ, ξ) = (58, 139), (51, 113)
nm respectively.

For temperatures of T = 5.75 K and T = 5 K (see
Fig. 3), the model predicts a first order phase transition
with a jump in the magnetization and an hysteresis be-
tween the normal and superconducting states. Indeed, as
shown in Figure 6 (in particular in the inset), the Meissner
state (L = 0) exhibits a bistable region near the transition
where the sample can be either superconducting or normal
depending on the direction of the magnetic sweep. Con-
sidering a critical value Bup

t for the increasing magnetic
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Fig. 4. Comparison between the experimental (markers) and
theoretical (solid and dotted lines) total magnetization with
L = 0 and L = 1. From top to bottom, curves at T = 4.5 K,
T = 3.25 K and T = 2 K respectively. The adjusted values for
λ and ξ are (λ, ξ) = (51, 100), (48, 83), (48, 72) nm respectively.

field at the superconducting-to-normal transition, and a
critical value Bdown

t for the decreasing magnetic field at
the normal-to-superconducting transition, the theoretical
curves fit the experimental data for the adjusted values of
parameters λ and ξ specified in the figure caption. The ab-
sence of jumps in the transition is explained by the spread
in values of the radii (high variance) of all nanowires con-
stituting the sample. In the limit σ → 0, a jump in the
theoretical magnetization appears, as can be seen experi-
mentally on a single disk [1].

For the three last temperatures studied experimentally
(see Fig. 4), the Abrikosov state L = 1 extends the phase
diagram (Bext, Energy) (see Fig. 6 with T = 2 K). Due
to the Bean-Livingston barrier2, the hysteretic behavior is
enhanced and determined by the transition fields between
L = 0 and L = 1 states (denoted Bt

L=0→1 and Bt
L=1→0).

Since our numerical simulations fix the vorticity L, the
values of the transition field were adjusted to fit the ex-
periment. From the analysis, it follows that Bt

L=0→1 lies
close to the normal free energy of the L = 0 state and
Bt

L=1→0 lies close to the minimum of the free energy in
the L = 1 state, as predicted in [13]. Without consider-
ing the L = 1 contribution, the experimental hysteretic
behaviour and the critical field cannot be reproduced as
displayed in Figure 5. We also note that the jump in the
transition is replaced by a smooth monotonous curve be-
cause of non-negligible variance in the radii values.

Finally, Figure 7 shows the temperature dependence
of the characteristic lengths λ and ξ, adjusted to fit the

2 This barrier is due to the fact that the superconducting
current creating a magnetic vortex is running in a direction
Opposite to that of the the screening current at the edge of
the sample [11,12].
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Fig. 5. Comparison between the experimental (markers) and
theoretical (solid and dotted lines) total magnetization at T =
2 K with L = 0 only. The adjusted values for λ and ξ are
(λ, ξ) = (48, 72) nm. The arrows indicate the direction of the
sweeping external magnetic field.

Fig. 6. The normalized free energy (above) and the magne-
tization (below) as function of the external magnetic field for
R = 116 nm and T = 6.85, 5 and 2 kelvins. The inset in the
above figure is a zooming of the boxed area which exhibits the
hysteretic behavior of the free energy near the critical magnetic
field at T = 5 K.
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Fig. 7. The figure presents the temperature dependence of λ
and ξ. The adjusted values (in order to fit the magnetization
curves) are in agreement with the empirical laws (9) for λ0 =
46 nm and ξ0 = 74 nm (solid lines). The error bars represent
a 10% variation around the given value.

experiments. All values agree within 10% with the empir-
ical laws [14],


λ(T ) = λ0√

1−t4
where t = T

Tc

ξ(T ) = ξ0(1−0.25t)√
1−t

(9)

where, λ0 = 46 nm and ξ0 = 74 nm, i.e. almost the char-
acteristic lengths of lead at zero temperature in the clean
limit (mean free path l � λ, ξ). Although all the κ values
(= λ/ξ) are below the critical one κc = 1/

√
2 (the lower

figure), the penetration at low temperatures of one vortex
is not surprising since the distinction between type-I and
type-II looses its relevance at mesoscopic scales.

4 Comments and conclusions

In order to explain and reproduce within 10% of error
the magnetic properties of our lead nanowires in an array,
only the cylindrically symmetric solutions are required. In
particular, the Meissner state (L = 0) and, for the lowest
temperatures, the Abrikosov state (L = 1) were exper-
imentally observed in these apparently type-I supercon-
ductors. The Giant Vortex states or the multivortex states
with higher vorticity (L ≥ 2) were not present since the
size of such magnetic vortices is too large compared to the
radius of the wires. However, the presence of an Abrikosov
state is not surprising since the distinction between type-
I and type-II looses its significance at mesoscopic scales.
In particular, the critical boundary between type-I and
type-II superconductor is not κc = 1/

√
2 (as in the case

of a bulk material), but is a function of the normalized

radius ub = R
λ(T ) and the vorticity L of the cylinder, i.e.

κc = f(ub, L) [15,12].
By changing the temperature of the sample in the

SQUID magnetometer, we modified κ and also especially
the normalized radius ub. Consequently, we were able to
check the three characteristic regions already observed by
Geim et al. in another geometry (disk, see [1]): the type-II
behaviour for small radius, the type-I phase transition in
the Meissner state, and the vortex state with type-II phase
transition from the superconducting to normal state. It
should also be stressed that the absence of jumps in state
transitions is explained by the spread in values of the ra-
dius of all nanowires within the sample.

This work provides thus a clear picture and a sim-
ple theoretical explanation for the magnetization of su-
perconducting nanowire arrays close to and far away from
the critical temperature, in perfect agreement with exper-
iments.
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